Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Curr Issues Mol Biol ; 46(4): 3408-3423, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38666944

ABSTRACT

Despite ongoing research in the field of breast cancer, the morbidity rates indicate that the disease remains a significant challenge. While patients with primary tumors have relatively high survival rates, these chances significantly decrease once metastasis begins. Thus, exploring alternative approaches, such as targeting proteins overexpressed in malignancies, remains significant. Filamin A (FLNa), an actin-binding protein (ABP), is involved in various cellular processes, including cell migration, adhesion, proliferation, and DNA repair. Overexpression of the protein was confirmed in samples from patients with numerous oncological diseases such as prostate, lung, gastric, colorectal, and pancreatic cancer, as well as breast cancer. Although most researchers concur on its role in promoting breast cancer progression and aggressiveness, discrepancies exist among studies. Moreover, the precise mechanisms through which FLNa affects cell migration, invasion, and even cancer progression remain unclear, highlighting the need for further research. To evaluate FLNa's potential as a therapeutic target, we have summarized its roles in breast cancer.

2.
Adv Med Sci ; 68(2): 290-297, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37660543

ABSTRACT

Cancer cell migration and metastasis are the biggest problems in the treatment of cancer patients. The most aggressive breast cancer (BC) is the triple-negative type. Therefore, effective therapeutic targets that limit cell migration are sought. One such target may be fascin, as its overexpression is characteristic to triple-negative breast cancer. The high level of fascin enables the formation of protrusion and thus promotes the invasion of cancer cells. Fascin also shows co-localization or functional relationships with other proteins. These are proteins involved in the epithelial-mesenchymal transition process, vimentin, cadherins, ß-catenin, and matrix metalloproteinases 2/9 (MMP-2/9). Fascin is also involved in many signaling pathways protein kinase C-δ (PKCδ), Wnt/ß-catenin, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and phosphatidylinositol 3-kinase (PI3K)-Akt. Therefore, in this article, we review currently available in vitro studies and compare them with The Cancer Genome Atlas (TCGA) data analysis of BC patients to demonstrate the role of fascin in the migration and invasion of cancer cells.


Subject(s)
Breast Neoplasms , beta Catenin , Female , Humans , beta Catenin/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinases/metabolism
3.
Acta Histochem ; 125(1): 151975, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36455340

ABSTRACT

BACKGROUND: The motor ability of cancer cells to cross the basement membrane contributes to their implantation in a new location. Metastasis is a significant factor that worsens the prognosis of cancer patients. Thus, reducing cell invasiveness is an important aspect of anticancer therapy, also in bladder cancer treatment. MATERIAL: The study material was the T24 cell line of human urinary bladder cancer. The migratory potential of the cells and the effect of the treatment with individually doses and synergistic combination of doxorubicin and metformin in the 500:1 ratio for 24 h were analyzed. RESULTS: The results obtained show a compound-initiated decrease in the motor abilities of bladder cancer cells compared to controls. A decrease in the rate of colony formation was observed, as well as inhibition of migration through inserts. The visualized reorganization of the vimentin and actin networks confirms the drug-initiated limitation of the metastatic potential of T24 cells. CONCLUSION: According to our knowledge, we are the first to show, that combination of doxorubicin and metformin also worth considering in the treatment of bladder cancer. We showed that simultaneous administration of these cytostatic enhances the antiproliferative effect of drugs, but also limits cells' migratory potential.


Subject(s)
Metformin , Urinary Bladder Neoplasms , Humans , Metformin/pharmacology , Doxorubicin/pharmacology , Urinary Bladder Neoplasms/drug therapy , Cell Line, Tumor , Cell Movement , Cell Proliferation
4.
J Clin Med ; 11(6)2022 Mar 13.
Article in English | MEDLINE | ID: mdl-35329898

ABSTRACT

Tendinopathy is a process of chaotic extracellular matrix remodeling followed by increased secretion of enzymes and mediators of inflammation. The histopathological assessment of tendinous tissue is crucial to formulate the diagnosis and establish the severity of tendon degeneration. Nevertheless, the microscopic analysis of tendinous tissue features is often challenging. In this review, we aimed to compare the most popular scales used in tendon pathology assessment and reevaluate the role of the neovascularization process. The following scores were evaluated: the Bonar score, the Movin score, the Astrom and Rausing Score, and the Soslowsky score. Moreover, the role of neovascularization in tendon degeneration was reassessed. The Bonar system is the most commonly used in tendon pathology. According to the literature, hematoxylin and eosin with additional Alcian Blue staining seems to provide satisfactory results. Furthermore, two observers experienced in musculoskeletal pathology are sufficient for tendinopathy microscopic evaluation. The control, due to similar and typical alterations in tendinous tissue, is not necessary. Neovascularization plays an ambiguous role in tendon disorders. The neovascularization process is crucial in the tendon healing process. On the other hand, it is also an important component of the degeneration of tendinous tissue when the regeneration is incomplete and insufficient. The microscopic analysis of tendinous tissue features is often challenging. The assessment of tendinous tissue using the Bonar system is the most universal. The neovascularization variable in tendinopathy scoring systems should be reconsidered due to discrepancies in studies.

5.
Int J Mol Sci ; 22(23)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34884962

ABSTRACT

Homeostasis is a fundamental property of biological systems consisting of the ability to maintain a dynamic balance of the environment of biochemical processes. The action of endogenous and exogenous factors can lead to internal balance disorder, which results in the activation of the immune system and the development of inflammatory response. Inflammation determines the disturbances in the structure of the vessel wall, connected with the change in their diameter. These disorders consist of accumulation in the space between the endothelium and the muscle cells of low-density lipoproteins (LDL), resulting in the formation of fatty streaks narrowing the lumen and restricting the blood flow in the area behind the structure. The effect of inflammation may also be pathological dilatation of the vessel wall associated with the development of aneurysms. Described disease entities strongly correlate with the increased migration of immune cells. Recent scientific research indicates the secretion of specific vesicular structures during migration activated by the inflammation. The review focuses on the link between endothelial dysfunction and the inflammatory response and the impact of these processes on the development of disease entities potentially related to the secretion of extracellular vesicles (EVs).


Subject(s)
Aortic Aneurysm/pathology , Atherosclerosis/pathology , Endothelium, Vascular/pathology , Extracellular Vesicles/pathology , Inflammation/pathology , Animals , Aortic Aneurysm/etiology , Atherosclerosis/etiology , Humans , Inflammation/etiology
6.
Int J Mol Sci ; 22(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34884588

ABSTRACT

Metastasis is one of the most urgent issues in breast cancer patients. One of the factors necessary in the migration process is the remodeling of the extracellular matrix (ECM). Metalloproteinases (MMPs) can break down the elements of the ECM, which facilitates cell movement. Many highly aggressive tumors are characterized by high levels of MMPs. In the case of breast cancer, the association between MMP-9 and the migration potential and invasiveness of cells has been demonstrated. In addition, reports indicating increased migration of breast cancer cells after the administration of the commonly used cytostatic cyclophosphamide (CP) are particularly disturbing. Hence, our research aimed to assess the effect of CP treatment on MDA-MB-231 and MCF-7 cells and how this response is influenced by the downregulation of the MMP-9 level. The obtained results suggest that CP causes a decrease in the survival of breast cancer cells of various invasiveness, and the downregulation of MMP-9 enhances this effect, mainly by inducing apoptosis. Moreover, in the group of MMP-9 siRNA-transfected CP-treated cells, a more severe reduction in invasion and migration of cells of both lines was observed, as indicated by the migration and invasion transwell assays and Wound healing assay. Hence, we suggest that CP alone may not result in satisfactory therapeutic effects. On the other hand, the use of combination therapy targeting MMP-9, together with the CP, could improve the effectiveness of the treatment. Additionally, we confirmed a relationship between the levels of MMP-9 and cytokeratin 19 (CK19).


Subject(s)
Breast Neoplasms/pathology , Cell Movement , Cyclophosphamide/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Matrix Metalloproteinase 9/chemistry , Antineoplastic Agents, Alkylating/pharmacology , Apoptosis , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Cycle , Cell Proliferation , Female , Humans , Keratin-19/genetics , Keratin-19/metabolism , Prognosis , Tumor Cells, Cultured
7.
Front Cell Dev Biol ; 9: 668032, 2021.
Article in English | MEDLINE | ID: mdl-34604206

ABSTRACT

Tumor necrosis factor α (TNFα) is one of the most important proinflammatory cytokines, which affects many processes associated with the growth and characteristics of endothelial, smooth muscle, and immune system cells. However, there is no correlation between most in vivo and in vitro studies on its role in endothelial cell proliferation and migration. In this study, we examined the effect of recombinant human (rh) TNFα produced in HEK293 cells on primary human coronary artery endothelial cells (pHCAECs) in the context of F-actin organization and such processes as migration and adhesion. Furthermore, we evaluated the possibility of the inhibition of the endothelial inflammatory response by the CRISPR-based regulation of TPM1 gene expression. We showed that TNFα-induced activation of pHCAECs was related to the reorganization of the actin cytoskeleton into parallel-arranged stress fibers running along the longer axis of pHCAECs. It allowed for the directed and parallel motion of the cells during coordinated migration. This change in F-actin organization promoted strong but discontinuous cell-cell contacts involved in signalization between migrating cells. Moreover, this form of intercellular connections together with locally increased adhesion was related to the formation of migrasomes and further migracytosis. Stabilization of the actin cytoskeleton through the CRISPR-based activation of endogenous expression of TPM1 resulted in the inhibition of the inflammatory response of pHCAECs following treatment with rh TNFα and stabilization of cell-cell junctions through reduced cleavage of vascular endothelial cadherin (VE-cadherin) and maintenance of the stable levels of α- and ß-catenins. We also showed that CRISPR-based activation of TPM1 reduced inflammatory activation, proliferation, and migration of primary human coronary artery smooth muscle cells. Therefore, products of the TPM1 gene may be a potential therapeutic target for the treatment of proinflammatory vascular disorders.

8.
Int J Mol Sci ; 22(14)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34299254

ABSTRACT

The transient receptor potential (TRP) melastatin-like subfamily member 2 (TRPM2) is a non-selective calcium-permeable cation channel. It is expressed by many mammalian tissues, including bone marrow, spleen, lungs, heart, liver, neutrophils, and endothelial cells. The best-known mechanism of TRPM2 activation is related to the binding of ADP-ribose to the nudix-box sequence motif (NUDT9-H) in the C-terminal domain of the channel. In cells, the production of ADP-ribose is a result of increased oxidative stress. In the context of endothelial function, TRPM2-dependent calcium influx seems to be particularly interesting as it participates in the regulation of barrier function, cell death, cell migration, and angiogenesis. Any impairments of these functions may result in endothelial dysfunction observed in such conditions as atherosclerosis or hypertension. Thus, TRPM2 seems to be an attractive therapeutic target for the conditions connected with the increased production of reactive oxygen species. However, before the application of TRPM2 inhibitors will be possible, some issues need to be resolved. The main issues are the lack of specificity, poor membrane permeabilization, and low stability in in vivo conditions. The article aims to summarize the latest findings on a role of TRPM2 in endothelial cells. We also show some future perspectives for the application of TRPM2 inhibitors in cardiovascular system diseases.


Subject(s)
Endothelial Cells/metabolism , TRPM Cation Channels/metabolism , Adenosine Diphosphate Ribose/metabolism , Animals , Calcium/metabolism , Cell Death , Cell Movement , Endothelial Cells/physiology , Humans , Ion Channel Gating/physiology , Oxidative Stress/physiology , Pyrophosphatases/metabolism , Reactive Oxygen Species/metabolism , TRPM Cation Channels/genetics , TRPM Cation Channels/physiology
9.
Medicina (Kaunas) ; 57(4)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918645

ABSTRACT

This study aimed to perform a comprehensive systematic review, which reports the role of the Bonar score in the histopathological assessment of tendinopathy and its clinical relevance. To identify all of the studies that reported relevant information on the Bonar scoring system and tendinopathy, an extensive search of the major and the most significant electronic databases (PubMed, Cochrane Central, ScienceDirect, SciELO, Web of Science) was performed. A systematic review of the literature was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The extracted data included-year of study, geographical location, type of the study, radiological modifications, gender, number of patients, region of tendinopathy, mean age, control group, characteristics of the Bonar score and alterations in the scale, mean Bonar score, number of investigators, area of tendon investigation, clinical and radiological implications. An extensive search of the databases and other sources yielded a total of 807 articles. Eighteen papers were finally included in this systematic review, and of these, 13 original papers included the clinical and radiological implications of tendinopathy. Radiological evaluation was present in eight studies (both magnetic resonance imaging (MRI) and ultrasound (US)). The clinical implications were more frequent and present in 10 studies. Using the Bonar score, it is easy to quantify the pathological changes in tendinous tissue. However, its connection with clinical and radiological evaluation is much more complicated. Based on the current state of knowledge, we concluded that the neovascularization variable in the Bonar system should be reconsidered. Ideally, the microscopic assessment score should follow the established classification scale with the radiological and clinical agreement and should have a prognostic value.


Subject(s)
Tendinopathy , Humans , Magnetic Resonance Imaging , Tendinopathy/diagnostic imaging , Tendons , Ultrasonography
10.
Cancer Manag Res ; 13: 91-106, 2021.
Article in English | MEDLINE | ID: mdl-33447082

ABSTRACT

PURPOSE: Metastasis remains a serious clinical problem in which epithelial-to-mesenchymal transition is strictly involved. The change of cell phenotype is closely related to the dynamics of the cytoskeleton. Regarding the great interest in microfilaments, the manipulation of ABPs (actin-binding proteins) appears to be an interesting treatment strategy. MATERIAL: The research material was the highly aggressive A549 cells with FHOD1 (F FH1/FH2 domain-containing protein 1) downregulation. The metastatic potential of the cells and the sensitivity to treatment with alkaloids (piperlongumine, sanguinarine) were analyzed. RESULTS: In comparison to A549 cells with naïve expression of FHOD1, those after manipulation were characterized by a reduced migratory potential. The obtained results were associated with microfilaments and vimentin reorganization induced by the manipulation of FHOD1 together with alkaloids treatment. The result was also an increase in the percentage of late apoptotic cells. CONCLUSION: Downregulation of FHOD1 induced reorganization of microfilament network followed by the reduction in the metastatic potential of the A549 cells, as well as their sensitization to selected compounds. The presented results and the analysis of clinical data indicate the possibility of transferring research from the basic level to in vivo models in the context of manipulation of ABPs as a new therapeutic target in oncology.

11.
Acta Histochem ; 122(7): 151625, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33066845

ABSTRACT

The aim of this investigation was to determine the effect of doxorubicin on F-actin rearrangement and ß-catenin and cofilin-1 in a rat glioma C6 cell line in combination with changes in their morphology and ultrastructure. The experimental material constituted rat glioma C6 cell line. The cells were incubated with sublethal doses of doxorubicin in the concentration of 50, 100 and 200 nM. The blue trypan dye method was used to determine the number of dead cells. Morphological and ultrastructural changes in the cells were evaluated using light and transmission electron microscope, respectively. In order to determine the rearrangements and level of expression of F-actin, ß-catenin and cofilin-1 they were analyzed using a fluorecence microscope. In turn, cell death and cell cycle were evaluated by Guava 6HT-2 L Cytometer. The performed experiments showed a dose-dependent decrease in the survival of C6 cells after treatment with doxorubicin. The analysis of cell death showed a dose-dependent increase in the population of apoptotic and necrotic cells. These results were confirmed by microscopy observation. The changes in morphology, ultrastructure, and rearrangements of F-actin, ß-catenin and cofilin-1 were also observed. The results obtained in the study showed that sublethal concentrations of doxorubicin influenced the structure of F-actin and other proteins involved in cell-cell interactions. Moreover, mitotic catastrophe may preceding apoptosis, what suggest the cytotoxic effect of low dose of doxorubicin. Furthermore, our results confirmed the multi-dimensional mechanism of DOX action in tumor cells.


Subject(s)
Cell Cycle/drug effects , Cell Death/drug effects , Doxorubicin/pharmacology , Glioma/drug therapy , Actins/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Glioma/ultrastructure
12.
Cells ; 9(10)2020 10 06.
Article in English | MEDLINE | ID: mdl-33036298

ABSTRACT

The actin cytoskeleton plays a crucial role in many cellular processes while its reorganization is important in maintaining cell homeostasis. However, in the case of cancer cells, actin and ABPs (actin-binding proteins) are involved in all stages of carcinogenesis. Literature has reported that ABPs such as SATB1 (special AT-rich binding protein 1), WASP (Wiskott-Aldrich syndrome protein), nesprin, and villin take part in the initial step of carcinogenesis by regulating oncogene expression. Additionally, changes in actin localization promote cell proliferation by inhibiting apoptosis (SATB1). In turn, migration and invasion of cancer cells are based on the formation of actin-rich protrusions (Arp2/3 complex, filamin A, fascin, α-actinin, and cofilin). Importantly, more and more scientists suggest that microfilaments together with the associated proteins mediate tumor vascularization. Hence, the presented article aims to summarize literature reports in the context of the potential role of actin and ABPs in all steps of carcinogenesis.


Subject(s)
Actins/metabolism , Carcinogenesis/metabolism , Microfilament Proteins/metabolism , Cell Movement , Humans
13.
Molecules ; 25(13)2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32635287

ABSTRACT

BACKGROUND: Cancers are one of the leading causes of deaths nowadays. The development of new treatment schemes for oncological diseases is an interesting direction in experimental medicine. Therefore, the evaluation of the influence of two alkaloids-piperlongumine (PL), sanguinarine (SAN) and their combination-on the basic life processes of the A549 cell line was considered reasonable. METHODS: The aim was achieved by analyzing the cytotoxic effects of PL and SAN and their combination in the ratio of 4:1 on the induction of cell death, changes in the distribution of cell cycle phases, reorganization of cytoskeleton and metastatic potential of A549 cells. The versatility of the applied concentration ratio was evaluated in terms of other cancer cell lines: MCF-7, H1299 and HepG2. RESULTS: The results obtained from the MTT assay indicated that the interaction between the alkaloids depends on the concentration and type of cells. Additionally, the compounds and their combination did not exhibit a cytotoxic effect against normal cells. The combined effects of PL and SAN increased apoptosis and favored metastasis inhibition. CONCLUSION: Selected alkaloids exhibit a cytotoxic effect on A549 cells. In turn, treatment with the combination of PL and SAN in a 4:1 ratio indicates a synergistic effect and is associated with an increase in the level of reactive oxygen species (ROS).


Subject(s)
Benzophenanthridines/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Dioxolanes/pharmacology , Drug Synergism , Isoquinolines/pharmacology , Lung Neoplasms/drug therapy , Anti-Infective Agents/pharmacology , Apoptosis , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle , Cell Movement , Cell Proliferation , Humans , Lung Neoplasms/pathology , Neoplasm Invasiveness , Reactive Oxygen Species/metabolism , Tumor Cells, Cultured
14.
Cancers (Basel) ; 11(8)2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31434275

ABSTRACT

Currently, autophagy in the context of cancer progression arouses a lot of controversy. It is connected with the possibility of switching the nature of this process from cytotoxic to cytoprotective and vice versa depending on the treatment. At the same time, autophagy of cytoprotective character may be one of the factors determining multidrug resistance, as intensification of the process is observed in patients with poorer prognosis. The exact mechanism of this relationship is not yet fully understood; however, it is suggested that one of the elements of the puzzle may be a cytoskeleton. In the latest literature reports, more and more attention is paid to the involvement of actin in the autophagy. The role of this protein is linked to the formation of autophagosomes, which are necessary element of the process. However, based on the proven effectiveness of manipulation of the actin pool, it seems to be an attractive alternative in breaking autophagy-dependent multidrug resistance in cancer.

15.
Acta Histochem ; 121(6): 724-731, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31262517

ABSTRACT

Oxymatrine is the alkaloid derived from the root of Sophora species. This compound is proven to exhibit anti-viral, anti-asthmatic, anti-fibrotic and anti-inflammatory properties. Additionally, oxymatrine is able to promote cancer cells apoptosis and inhibit their proliferation. The aim of this study was to present the influence of oxymatrine on non-small cell lung cancer cells. The results indicate, that this agent induces dose-dependent cell death mainly through ER stress-induced apoptosis pathway. We also suggest that the oxymatrine reduces the metastatic potential by inhibition of the EMT process, as A549 cells treated with chosen doses of the compound were characterized by a decrease in the expression of the N-cadherin, vimentin and the elevation of E-cadherin level. Moreover, the study broadens the knowledge on so far poorly understood aspect of the influence of oxymatrine on the cytoskeleton structure.


Subject(s)
Alkaloids/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation/drug effects , Endoplasmic Reticulum Stress/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Lung Neoplasms/metabolism , Neoplasm Proteins/biosynthesis , Quinolizines/pharmacology , A549 Cells , Carcinoma, Non-Small-Cell Lung/pathology , Epithelial-Mesenchymal Transition , Humans , Lung Neoplasms/pathology
16.
Int J Oncol ; 54(3): 1099-1111, 2019 03.
Article in English | MEDLINE | ID: mdl-30569147

ABSTRACT

Malignant glioma is the most common type of brain cancer with poor prognosis. Surgical resection, chemotherapy and radiotherapy are the main therapeutic options; however, in addition to their insufficient efficacy, they are associated with the pain experienced by patients. To relieve pain, local anesthetics, such as lidocaine can be used. In the present study, the effects of lidocaine on the C6 rat glioma cell line were investigated. An MTT assay and Annexin V/propidium iodide analysis indicated the increase in the percentage of apoptotic and necrotic cells in response to lidocaine. Furthermore, light microscopy analysis on the ultrastructural level presented the occurrence of vacuole­like structures associated with autophagy, which was supported by the analysis of autophagy markers (microtubule­associated protein 1A/1B­light chain 3, acridine orange and Beclin­1). Additionally, reorganization of the cytoskeleton was observed following treatment with lidocaine, which serves an important role in the course of autophagy. To determine the nature of autophagy, an inhibitor, bafilomycin A1 was applied. This compound suppressed the fusion of autophagosomes with lysosomes and increased the percentage of apoptotic cells. These results demonstrated that lidocaine may induce cytoprotective autophagy and that manipulation of this process could be an alternative therapeutic strategy in the treatment of cancer.


Subject(s)
Autophagy/drug effects , Brain Neoplasms/pathology , Glioma/pathology , Lidocaine/pharmacology , Animals , Beclin-1/genetics , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Cycle/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cytoskeleton/drug effects , Glioma/genetics , Glioma/metabolism , Microtubule-Associated Proteins/genetics , Rats
17.
Onco Targets Ther ; 11: 8275-8292, 2018.
Article in English | MEDLINE | ID: mdl-30538497

ABSTRACT

PURPOSE: The aim of the study was to evaluate the effect of piperlongumine (2 and 4 µM) on endothelial EA.hy926 and lung adenocarcinoma A549 cells with regulated expression of profilin-1 (PFN1). MATERIAL AND METHODS: The cytotoxicity of alkaloid was evaluated by MTT assay, while cell death was assessed using double staining with annexin V and propidium iodide. Subsequently, the level of PFN1 1) upregulation in EA.hy926 endothelial cells and 2) downregulation in A549 lung adenocarcinoma cells. The next step was the analysis of the effect of PFN1 manipulation on cytoskeletal proteins. RESULTS: The results showed that piperlongumine may inhibit proliferation of EA.hy926 and A549 cell lines and also induce cell death in a dose-dependent manner. Furthermore, endothelial cells with PFN1 overexpression showed lower sensitivity to alkaloid and strengthening of cell-cell interactions. In the case of A549 cells, loss of PFN1 expression resulted in a lower percentage of early apoptotic cells, reorganization of F-actin and vimentin network, and reduction of migratory potential. CONCLUSION: We suggest that upregulation of PFN1 in endothelial cell line may stabilize the cell junctions. In turn, PFN1 downregulation in A549 cells probably suppresses cell migration and sensitizes cells to anticancer agents.

18.
Biomed Res Int ; 2018: 4578373, 2018.
Article in English | MEDLINE | ID: mdl-29581975

ABSTRACT

Metastasis causes death of 90% of cancer patients, so it is the most significant issue associated with cancer disease. Thus, it is no surprise that many researchers are trying to develop drugs targeting or preventing them. The secondary tumour site formation is closely related to phenomena like epithelial-to-mesenchymal and its reverse, mesenchymal-to-epithelial transition. The change of the cells' phenotype to mesenchymal involves the acquisition of migratory potential. Cancer cells movement is possible due to the development of invasive structures like invadopodia, lamellipodia, and filopodia. These changes are dependent on the reorganization of the actin cytoskeleton. In turn, the polymerization and depolymerization of actin are controlled by actin-binding proteins. In many tumour cells, the actin and actin-associated proteins are accumulated in the cell nucleus, suggesting that it may also affect the progression of cancer by regulating gene expression. Once the cancer cell reaches a new habitat it again acquires epithelial features and thus proliferative activity. Targeting of epithelial-to-mesenchymal or/and mesenchymal-to-epithelial transitions through regulation of their main components expression may be a potential solution to the problem of metastasis. This work focuses on the role of these processes in tumour progression and the assessment of therapeutic potential of agents targeting them.


Subject(s)
Actins/metabolism , Epithelial-Mesenchymal Transition , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Neoplasms/therapy , Animals , Humans , Neoplasms/pathology
19.
Int J Mol Med ; 40(6): 1615-1623, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29039455

ABSTRACT

For almost 30 years, studies have confirmed the effectiveness of cell-penetrating peptides (CPPs) in the facilitation of the intracellular delivery of various cargo molecules, including RNA, DNA, plasmids, proteins or nanoparticles, under in vitro and in vivo conditions. The cellular uptake of CPPs occurs via energy-dependent, as well as -independent mechanisms. In this relatively new direction of research, studies have attempted to introduce genome modification systems into cells by CPPs. Cellular uptake of CPPs carrying either covalently bound or electrostatically conjugated cargo, has several advantages over viral delivery systems, as it does not lead to any significant cytotoxicity or immunogenicity, and simultaneously it is more efficient than other non-viral systems. So far, CPPs have been successfully used to introduce Cre recombinase, zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats systems into cells. The present article systematically reviewed the information obtained from studies on CPPs and assessed their utility with regard to their effectiveness and safety of use.


Subject(s)
Cell-Penetrating Peptides , Drug Delivery Systems , Gene Editing , Animals , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...